Scattering of NH3 and ND3 with rare gas atoms at low collision energy.
نویسندگان
چکیده
We present a theoretical study of elastic and rotationally inelastic collisions of NH3 and ND3 with rare gas atoms (He, Ne, Ar, Kr, Xe) at low energy. Quantum close-coupling calculations have been performed for energies between 0.001 and 300 cm(-1). We focus on collisions in which NH3 is initially in the upper state of the inversion doublet with j = 1, k = 1, which is the most relevant in an experimental context as it can be trapped electrostatically and Stark-decelerated. We discuss the presence of resonances in the elastic and inelastic cross sections, as well as the trends in the inelastic cross sections along the rare gas series and the differences between NH3 and ND3 as a colliding partner. We also demonstrate the importance of explicitly taking into account the umbrella (inversion) motion of NH3 in order to obtain accurate scattering cross sections at low collision energy. Finally, we investigate the possibility of sympathetic cooling of ammonia using cold or ultracold rare gas atoms. We show that some systems exhibit a large ratio of elastic to inelastic cross sections in the cold regime, which is promising for sympathetic cooling experiments. The close-coupling calculations are based on previously reported ab initio potential energy surfaces for NH3-He and NH3-Ar, as well as on new, four-dimensional, potential energy surfaces for the interaction of ammonia with Ne, Kr, and Xe, which were computed using the coupled-cluster method and large basis sets. We compare the properties of the potential energy surfaces corresponding to the interaction of ammonia with the various rare gas atoms.
منابع مشابه
Dynamics of gas phase Ne(*) + NH3 and Ne(*) + ND3 Penning ionisation at low temperatures.
Two isotopic chemical reactions, Ne(*) + NH3, and Ne(*) + ND3, have been studied at low collision energies by means of a merged beams technique. Partial cross sections have been recorded for the two reactive channels, namely, Ne(*) + NH3 → Ne + NH3(+) + e(-), and Ne(*) + NH3 → Ne + NH2(+) + H + e(-), by detecting the NH3(+) and NH2(+) product ions, respectively. The cross sections for both reac...
متن کاملResonances in rotationally inelastic scattering of NH3 and ND3 with H2.
We present theoretical studies on the scattering resonances in rotationally inelastic collisions of NH3 and ND3 molecules with H2 molecules. We use the quantum close-coupling method to compute state-to-state integral and differential cross sections for the NH3/ND3-H2 system for collision energies between 5 and 70 cm(-1), using a previously reported potential energy surface [Maret et al., Mon. N...
متن کاملState-to-state resolved differential cross sections for rotationally inelastic scattering of ND3 with He.
State-to-state differential cross sections are reported for rotationally inelastic scattering of fully state-selected ND3 (j(k)(±) = 1(1)(-)) with He. Experimental measurements are compared with full close-coupling quantum-mechanical scattering calculations that used an ab initio potential energy surface. Results are presented for final states up to j'(k')(±) = 7(7)(-) at a mean collision energ...
متن کاملروش جفتشدگی نزدیک دومرکزی در فرآیند انتقال بار
In the present work, the transition matrix elements as well as differential and total scattering cross-sections for positronium formation in Positron-Hydrogen atom collision and hydrogen formation in Positronium-Hydrogen ion collision, through the charge transfer channel by Two-Centre Close-Coupling method up to a first order approximation have been calculated. The charge transfer collision is ...
متن کاملScattering of Stark-decelerated OH radicals with rare-gas atoms
We present a combined experimental and theoretical study on the rotationally inelastic scattering of OH (X 2Π3/2, J = 3/2, f) radicals with the collision partners He, Ne, Ar, Kr, Xe, and D2 as a function of the collision energy between ∼ 70 cm and 400 cm. The OH radicals are state selected and velocity tuned prior to the collision using a Stark decelerator, and field-free parity-resolved state-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 143 18 شماره
صفحات -
تاریخ انتشار 2015